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Stability of an oscillated fluid with a uniform 
density gradient 
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We consider instabilities in a fluid with a constant density gradient that  is subject 
to arbitrarily oriented oscillatory accelerations. With the Boussinesq approximation 
and for the case of an unbounded fluid, transformation to Lagrangian coordinates 
allows the reduction of the problem to an ordinary differential equation for each 
three-dimensional wavenumber. The problem has three parameters : the non- 
dimensional amplitude R of the base-state oscillation, the non-dimensional level of 
background steady acceleration, which for some cases can be represented in terms of 
a local (in time) Richardson number Ri, and the Prandtl number Pr.  Some general 
bounds on stability are derived. For Pr = 1 closed-form solutions are found for 
impulse (delta function) accelerations and a general asymptotic solution is 
constructed for large R and general imposed accelerations. The asymptotic solution 
takes advantage of the fact that  at large R wave growth is concentrated a t  ‘zero 
points ’. These are times when the effective vertical wavenumber passes through zero. 
Kelvin-Helmholtz instabilities are found to dominate a t  low R while Rayleigh- 
Taylor instabilities dominate a t  high. At high R, the uniform shear of the 
Kelvin-Helmholtz case tends to distort and weaken instability waves. With unsteady 
flows, Ri = a is no longer an instability limit. Significant instabilities have been found 
for sinusoidal forcing for Ri up to 0.6. 

1. Introduction 
There has been considerable interest recently in examining the response of non- 

homogeneous fluids to oscillating accelerations. Most effort has been directed toward 
convection induced by accelerations directed parallel to the fluid’s density gradient. 
Recent work, for example, has been reported by Wadih & Roux (1988), who 
considered the onset of convection in an infinite cylinder with the temperature 
gradient and accelerations directed along its length. Earlier work has been reported 
by Donnelly, Reif & Suhl (1962), Gresho & Sani (1970), and Burde (1970). In  
contrast, there has been no analytically oriented work done for the apparently more 
important case (Kamotani, Prasad & Ostrach 1978) of the density gradient and 
accelerations oriented normally to each other. This orientation directly excites fluid 
motion and would seem therefore to offer the possibility of very rapid growth of 
instabilities. 

The reason for the neglect is the very reason why it is interesting: the oscillating 
convective terms caused by the acceleration add considerable difficulties to  a 
convectional linearized analysis. However, there is one situation in which these 
difficulties can be overcome; that is when a uniform density gradient causes an 
approximately uniform shear flow. With uniform shear a Lagrangian coordinate 
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transformation can eliminate the spatial dependence of the linearized equations’ 
coefficients. Further, if the scale of excited instabilities is smaller than the width of 
the shear region, it may be acceptable to model the shear as unbounded. This then 
permits a reduction of the problem to the solution of ordinary differential equations 
with time-dependent coefficients. The usefulness of the Lagrangian transformation 
for uniform shear problems was first noticed by Lord Kelvin (Thomson 1877) bu t  it 
was largely forgotten until the last two decades. The technique has been recently 
used by Hartman (1975), Marcus & Press (1977), Tung (1983), Lagnado, Phan-Thien 
& Leal (1984), Bayley (1986), Landman & Saffman (1987), Craik (1989), and Fame11 
(1989). Craik & Criminale (1986) give a thorough discussion of instabilities of a wide 
variety of non-parallel shear flows. 

The paper proceeds as follows. The perturbation flow equations for unbounded, 
oscillating shear are derived in tj 2. Qualitative features of Rayleigh-Taylor 
instabilities are discussed briefly in $ 3. The Kelvin-Helmholtz case with zero mean 
acceleration is discussed in $4. For Pr = 1 exact closed-form solutions are derived for 
the case of impulse forcing, and asymptotic solutions are derived for general forcing 
at  large R. These are used to discuss the qualitative features of the Kelvin-Helmholtz 
instabilities. The modifying effects of a mean stabilizing acceleration are then 
discussed in $5. Concluding comments along with a brief discussion of the effects of 
boundaries are contained in $6. 

2. Formulation 
We consider an unbounded Boussinesq fluid subject t o  periodic accelerations. 

Cartesian coordinates {x, y, z }  are used with corresponding fluid velocity components 
{u,v,w}. The fluid has density pav+pzz. The imposed acceleration is of the form 
w 2 A { X ( w t ) ,  Y”(wt) ,Z”(wt)+G},  where G is steady and X”, Y”, and 2” are oscillatory. 
The oscillatory accelerations have period 27t/w. X ,  Y ,  Z”, and G are non-dimensional 
while A has units of length. The primes indicate differentiation with respect to wt. 
The displacement vectors X, Y ,  and 2 each have zero mean, as do therefore the 
velocities X ,  Y’, and 2 ,  and the accelerations. A is defined by requiring the 
dimensionless displacement vector function { X ,  Y ,  Z }  or one of its dimensionless 
derivatives to have an amplitude of 1 in a suitable (chosen on a case-by-case basis) 
norm. G and pz are both restricted to  being positive. We thus consider only stable 
stratifications. 

The imposed acceleration field together with the density gradient drive an 
oscillating shear flow. The momentum equations for the basic shear are 

with solutions 

aa _ -  - w 2 A X ( w t )  p ” z ,  
at Pav 

ag P - = w2AY”(wt)”z, 
at Pav 

ti = w A X ( w t )  L z ,  P 
Pav 

(3) 
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The non-dimensionalized linearized equations for perturbations to this shear flow are 

au av aw -+-+- = 0, 
ax ay ax 

-+R 
at 

(54  

The same symbols have been kept for non-dimensional as for dimensional quantities. 
To obtain (5), the original dimensional equations are scaled by the viscous 
lengthscale (vp,/w)i, the timescale l/w, the velocity scale wA, the pressure scale 
w2Apav(vav/w)~, and the density scale pa,. Pr is the Prandtl number where K,, 

is the average molecular or thermal diffusivity of the fluid. R is equal to ApJp,,. 
Variants of (5) and of the scaling that was used to obtain it arise from two special 

cases. The first is when the fluid is both inviscid and non-diffusive. Then there is no 
lengthscale in the basic flow. The equations, however, retain the parameter R. The 
second is when the fluid is inviscid but has finite diffusivity. The appropriate 
lengthscale is then (K,,/O)& and Pr-’ in (5e)  is replaced by 1. 

Equations (5a-e) have coefficients that are functions of both time and the vertical 
direction z.  However, the coefficients’ z dependence can be eliminated by the 
transformation to Lagrangian coordinates 

a = x-RX(t) Z, b = y-RY(t) Z, c = Z. (6) 
This eliminates the z-dependent terms in (5) at the cost of complicating the a/az 
operator, which becomes 

(7) - a a  = --RX(t)--RY(t)-. a a 
az ac aa ab 

The great advantage of the Lagrangian formulation is that the resulting (a, b, c) 
independence of the coefficients allows the consideration of individual waves 
exp (i(aa+pb+yc)). The evolution of each wave is determined from the system of 
equations : 

au+pv+(y-cS)w = 0 ,  (8a )  

( 8 b )  

-+12v = -ipp-RY’w+Y“p, (84  

(8d) 

( 8 4  

du 
-+12u = -iap-RXw+Xp, 
dt 

dw 
dt 

dw 
- + 12w = - i ( y - 6)  p + (2” + G) p, 
dt 

-+Pr-112p dP = -Rw, 
dt 
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where 6 = CGRX+pRY and l2 = a2 +p2+ ( ~ - 6 ) ~ .  Application of the continuity 
equation (8u)  to the momentum equations ( 8 b - d )  then reduces (8) to a system of 
two first-order ordinary differential equations : 

(:+ 1 2 )  Z2w = ((6-7) ax” + (6 -y )  BY” + (a2 + p2) (2” + G)) p, 

Equations (9a ,  b )  are in a useful form as they stand. A second formulation, 
however, brings out additional aspects of the system dynamics: (9u, b )  are first 
combined to yield a single second-order equation for p. The substitution 

p = --enp( 1 -~[ (Er- l+ l ) lZdt )p  
(l”3 

then gives 

equation (1  1 )  is particularly useful for the case of large R. 
We note briefly that the above approach can be extended to a fluid with an 

arbitrary number of chemical components so long as the gradients in composition are 
uniform. The gradient in composition fraction of each component can be oriented in 
any direction. Interesting and relatively simple cases that could be looked at include 
double-diffusive phenomena and situations in which the temperature and com- 
position gradients are oriented perpendicularly to  each other. 

Before closing this section, we outline some of the basics of Floquet theory and 
nomenclature. The stability of solutions to  (9) can be determined through its two 
linearly independent normal solutions. These are solutions in which {w(t + 2n), 
p(t+2n)} = a{w(t) ,p( t ) } .  We shall call the a Floquet factors. Instability is proved if 
one of the Floquet factors has a magnitude greater than one. The Floquet exponents 
h are defined in terms of the Floquet factors as exp (2nA) = cr. It can be shown that 
all unstable normal solutions of (9) have real cr and thus the normal solutions are 
themselves real. This simplifies some stability proofs and results. Further information 
about the Floquet theory of second-order equations can be found in Stoker (1950). 

3. Rayleigh-Taylor case 
The coefficients of (9) depend on three non-dimensional parameters, on the 

disturbance wavenumber, and on a very general vector function. Rather than 
consider (9) in all this generality, we shall attempt to gain an idea of the range of 
instability dynamics by examining some particular cases. We begin by briefly 
considering instabilities of Rayleigh-Taylor type. These will be shown to provide a 
considerable contrast to Kelvin-Helmholtz instabilities, which will be considered in 
detail in $54 and 5. 

In  the Rayleigh-Taylor case the accelerations are parallel to the density gradient 
and thus the basic state is motionless. With no motion, S is zero and l2  is constant. 
Equation (1 1) becomes 
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with l2 = a2 + p2 + y2.  This has closed-form solutions for 2" made up of impulses, 
being piecewise constant, and being continuous and piecewise linear. Also, when 
2" = cost, (12) becomes Mathieu's equation, solutions of which are discussed in 
detail by Arscott (1964). 

We shall discuss three aspects of the general behaviour of Rayleigh-Taylor 
instabilities. First, a Squires theorem can be proved. From (10) and (12), the Floauet 
exponents of the system are dependent on four parameters: 12,  Pr ,  G, and R = 

(a2++2/1') R. From the relationship between R and R ,  the minimum R that produces 
a given growth rate is equal to  the minimum R and occurs when y = 0. I n  particular, 
the critical R is thus found for y = 0. 

Next, we consider the onset of instability when G = 0 (or is small enough to  be 
neglected). Non-zero lower bounds on the critical R can then be proved for all 
integrable 2". The proof, which will only be outlined here, is in two steps. Equations 
(9a, 6) can be combined to yield 

In the first step of the proof it is shown that any unstable normal solution of (13) 
must have a t  least one zero in every interval of length 2n. The second step, based on 
a proof by Lyapunov (Bellman 1953, pp. 123-125), shows from equation (12) that 
this is impossible unless 

jrRIz"l dt 2 -. 2 
7t 

Thus, 

This bound is found for the case 1' = 0, which is the value of l 2  that makes solutions 
to (12) most rapidly oscillatory. A lower bound on unstable R can be found as a 
function of l2 from (12) using non-oscillation theorems of Moore (1956). This lower 
bound increases monotonically with increasing 12 .  

Lastly, we note the dependence of the Floquet exponent on R as R becomes large. 
For G zero or dominated by Z", a quasi-steady analysis of (12) gives h = O(Ri). 

4. Kelvin-Helmholtz case, G = 0 
We now consider the case of accelerations perpendicular to the density gradient. 

This section considers the case G = 0. The effect of G will be considered in 95. For 
simplicity, we set Y = Z = 0 and /3 = 0 throughout this section. 

The oscillating base-state velocity field of the Kelvin-Helmholtz case greatly 
affects the stability characteristics of the system. First, unlike the Rayleigh-Taylor 
case, the critical R of any forcing is zero. This can be seen through an examination 
of equations (10) and (1  1). As the wavenumber vector (01, y }  goes to zero these reduce 
to 

1 - d2p RZ(X)' 
P ' X P ,  ( 1  ) -- dt2 (( ;J J'=" 

RX-- + 1  

For R > 0,  the coefficient of p" is less than or equal to 0 for all t and p" increases 
exponentially. p oscillates but its Floquet exponent is the same as that of p". In the 
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limit R -f 0, fi  grows linearly in t. The most significant difference, however, between 
the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities occurs a t  high R. The 
effect of the Kelvin-Helmholtz shear is to change the effective vertical wavenumber 
from y to y-aRX. Unless a is very small, a large R results a t  most times in a large 
12.  From (9a), large l2 has the effect of suppressing w, and, from (96), this suppresses 
the creation of additional p. The result, as will be shown, is a very weak increase in 
maximum instability growth rate with increasing R. Thus, though Kelvin-Helmholtz 
instability dominates a t  small R,  Rayleigh-Taylor instability will be found to be 
most important a t  moderate and large R. The above argument holds for both the 
non-diffusive and diffusive cases. I n  the latter case i t  can also happen that an increase 
in R can directly stabilize a wave by increasing the amount of viscous and molecular 
diffusive damping. 

The case Pr = 1 is a bit simpler than general Pr because a transformation can be 
applied that separates out diffusive effects. Most of $4 will therefore be limited to this 
case. However, only general features that are applicable for general Pr will be 
emphasized. Additional phenomena that occur for other values of Pr will be 
considered briefly in $4.4. 

For Pr = 1, and with Y(t) = Z(t) = p = 0, equations (9a, b)  become 

4.1. Overview, Pr = 1 

(;+lZ)Pw = (aRX-y)cCxp, 

dP -+12p = -Rw. 
dt 

The transformations 

p = R e x p (  -[Z2dt)P; w = exp(-[Pdt)& 

* X = X - -  Y €=RR- '  
CCR' 

and the substitutions 

reduce (15) to the simple form 

db 
dt 

- W. - - _  

The effect of the transformations (16) is to separate out diffusive effects from the 
equation. Alternatively, (18) can be seen as the viscous case in the long-wave limit 
a + 0, y --f 0 with y /aR zero or finite. 

This section demonstrates some of the chief features of the Kelvin-Helmholtz case 
by showing results of numerical calculations for X = cost. Analytical solutions that 
further illustrate these features will be developed in following sections. In  this 
section, results will primarily be given for the diffusive equations (15). The exception 
is results given in figure 5, which are from (18). The analysis in $84.2 and 4.3 will use 

We first consider the variation of the Floquet exponent A with wavenumber. 
Figure 1 shows the Floquet exponents as a function of y/& for aR = 0.5 and 1.0, for 

(18). 
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FIGURE 1. A as a function of y/aR for R = 2 ,  5, 10, 20, and 50; X = cost. (a) aR = 0.5, 
( b )  aR = 1.0. 
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h 
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a 

FIGURE 2. h as a function of a for y = 0, for R = 1 ,  2, 5, 10, and 20; X = cost. 

R = 2, 5 ,  10, 20, and 50. The results show that h is a monotonically decreasing 
function of y. (For Pr = 1, h is always real and it is usually real for general Pr.) Near 
y = 0 this decrease is very gradual. At the larger values ofR there is a sharp decrease 
in h as y/& goes through 1.  This, as will be shown in detail, is associated with the 
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disappearance of ‘zero points’. These are times when the effective vertical 
wavenumber y-aRX is zero. Wave growth is most rapid a t  these times. As y/aR 
becomes large h becomes linear in y and approximately independent of R. 

Figure 2 shows h as a function of a €or y = 0 and R = 1,2,5,10,  and 20. This shows 
that as R increases the range of unstable a decreases, the range being roughly O( l/B). 
This occurs even though the maximum h increases with R. The trend is also hinted 
a t  in figure 1. 

Figures 3 and 4 show the behaviour of normal solutions for different R and y/aR. 
The purpose of the figures is to show the importance of the zero points in the 
instability process. At large R, growth of the instabi1it)y wave is concentrated in small 
regions about these points. The figures show 6 and w, where {p ,  w} = {p,  2;) exp ( A t ) .  
p and w are periodic with period 2.11: (Stoker 1950). In the figures, p is always negative 
while w is positive. 

Figure 3 gives the unstable normal solutions for y = 0, aR = 0.5, for R = 4, 10, 20, 
and 40. The zero points are a t  i.11: and in. Even a t  R = 4 wave growth is concentrated 
near the zero points. w shows a pronounced peak a t  zero points and p, driven by w,  
increases rapidly in amplitude. As R increases, the peaks in w become increasingly 
sharp, their widths being O(l/R). Away from these peaks w is nearly zero and p 
decreases monotonically in amplitude. This decrease also occurs for p itself. 

Figure 4 shows normal solutions for R = 40, aR = 0.5, for y = 0.44, 0.47, 0.5, and 
0.53. The figure shows how the normal solution changes as zero points disappear. At 
y = 0.5 there is only one zero point, a t  t = 0, per period and at y = 0.53 there are 
none. As y approaches 0.5, the w and p peaks diminish and become smoother. The 
smoothing is due to the decrease in X at the zero point as y /aR increases ; the zero- 
point region has thickness that varies inversely with X .  The lowered peaks are due 
to the somewhat paradoxical fact that the slower the base flow moves through a 
zero point the less the instability growth. This is derived analytically (equations 
(32), (33)) in $4.3. The peaks in w essentially disappear for y = 0.5 and 0.53. The 
wave is still unstable a t  y = 0.5, where h = 0.438, but is stable a t  y = 0.53, 
where h = -0.186. The wave grows in amplitude in the vicinity of cost = 1 even 
for y = 0.53 but this growth is more than offset by the steady decay of the wave at all 
other times. 

Figure 5 gives another look at the effect of zero points. Results are from equation 
(18). The figure shows log$, the unstable Floquet factor for (is), plotted against 
logR for values of y/aR near 1. For small R a rapid increase in 6 is shown for all 
y/aR but for large R the log$ curves separate out according to whether y/& is 
less than, equal to, or greater than one. For y/aR > 1 (no zero points) the curves 
eventually return to  0. For y/aR = I (one zero point) the curve asymptotes to a 
slope of roughly + (6 M O(R1)). For y/& < 1 the curves asymptote to a slope of 2 

4.2. Solution for impulse accelerations, Pr = 1 

Closed-form solutions of (18) can be derived for the case of flow driven by impulse 
(delta-function) accelerations. An impulse acceleration model provides a useful 
approximation to a given base flow provided that the impulse model’s X and X are 
equal to the original flow’s X and x’ a t  the original flow’s zero points. It turns out, 
as will be shown in $4.3, that the exact form of X itself is relatively unimportant. 

($ = O(R2)). 

FIGURE 3. Periodic components w and p of the unstable normal solutions for y = 0, aR = 0.5, for 
(a)  R = 4, ( b )  10, (c) 20, and ( d )  40; X = cost. In  the figures, zb is always positive while p is negative. 
The Floquet exponents of the solutions are (a )  0.99, ( b )  1.32, (c) 1.55, and ( d )  1.78. 
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In  this section we shall briefly develop the solution for the impulse model and then 
apply it to look a t  bounds on unstable wavenumbers and to look at the role of zero 
points. 

Solution for impulse forcings is straightforward. From (18), between impulses 
Zi, = C / ( z 2 + ~ 2 ) ,  where C is a constant. From this, Zi, has a spike in amplitude a t  zero 
points. G/C is then O(R2) while away from zero points Zi,/C is O(1).  From (18b) b 
varies according to tan-'Rz. The bulk of change in ,6 thus occurs in an O(e/-%!') wide 
region about each zero point. 

Transition formulae can be derived that relate solutions for Zi, and 1 across impulse 
points, and from this general expressions for the 6, the Floquet factors of (18), can 
be derived. However, this general result is not particularly illuminating. Instead, we 
jump to consideration of a particular case, two impulses per time period, of strengths 
+I, I positive, the first at t = 0 and the second a t  t = 7t. The resulting Floquet factor 
is 

where 

and 

6 = A +  ( ~ 2 -  I);, 
A = 1+~IRY-2Xm,,XminR2P 

Y -  X,,, = id -- , Xmin = -id -x aR aR' 
- 

Y = tan-' (Rgmax) -tan-' (Rzmin). (19c) 

The Floquet factors for the original variables p and u are 

u = exp ( -&n312a2R2) exp ( - 2n(a2 + y2)) 6. (20) 
Perhaps the most significant result from (19) and (20) is the very weak increase of 

growth rate, relative to the Rayleigh-Taylor case, with increasing R. This is due to 
the enhanced diffusive and shear-related damping that occurs a t  large R. The 
Floquet exponent of the fastest growing wave increases only as O(1nR). Further, this 
increase is sustained as R-+ co only for a+O. For any finite, fixed 01 viscous effects 
enforce stability at large enough R. Then, h -+ O( - a2R2). 

The effect of zero points is seen in (19) through Y. With two zero points, as 
R + 00, Y-+ n. Then A --f O(R2). With one zero point (either .&,,,, or Xmin equal to 
zero) Y + in and A + O(R). With no zero points A + 1. The first and last results are 
in agreement with the results of figure 5 for X = cost. The one-zero-point result is 
different,with the sinusoidal 6 being roughly O(R;) rather than O(R). This difference 
is probably due to the occurrence in the impulse case of an impulse right at the zero 
point. 

Useful upper bounds on unstable wavenumbers can also be determined. These 
bounds hold approximately for sinusoidal and other types of accelerations. Results 
confirm what was observed in $4.1. From (19) and (20) the largest unstable IaJ occurs 
when y = 0. Then 

(21) 
In (6(R, y = 0)) 

a2 = 
&7t312R2+2.n ' 

At large R, 6 is close to but bounded below 2A.  This can be used to derive the 
approximate upper bound 

(22 )  
In ($t412R2 + 2n21R + 2 )  

a2 < 
+ 3 1 2 ~ 2  + 2.n 

FIGURE 4. Periodic components w and r; of normal solutions for R = 40, aR = 0.5, for (a) y = 0.44, 
(b)  0.47, (c) 0.50, and ( d )  0.53; X = cost. In the figures, zh is always positive while 16 is negative. The 
Floquet exponents of the solutions are (a) 1.23, (b) 1.04, (c) 0.44, and ( d )  -0.19. 
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FIGURE 5 .  Log8 as a function of logR, for yfaR = 0.96, 0.98, 1.00, 1.02, and 1.04; X = cost. 

An upper bound on unstable y2 can be found in a similar manner. It is 

In (&412R2 + 2x21R + 2) 
2 x  

y2 ,< 

Roughly, the maximum unstable lccl is O(ln R/R), while the maximum unstable )y1 is 
O(1nR). 

It should be remembered that the system was non-dimensionalized using the 
Stokes viscous lengthscale. The limit on the unstable effective vertical wavenumber 
y-clRX(t) of O(1nR) is thus consistent with the expected dominance of viscous 
damping a t  the Stokes scale. Since the Stokes scale is often quite small, the modest 
looking limits on y and aR in fact indicate the possible existence of very short- 
wavelength instabilities. 

4.3. Asymptotic solutions for Pr = 1 and large R 
Both the numerics of $4.1 and the impulse solution of $4.2 have shown the 
importance of zero points. As R + 00 these points are in fact necessary for instability. 
Significant wave growth is then limited to  narrow regions surrounding these points. 
Away from zero points w is comparatively quite small and p is relatively quiescent. 
In  this section, we show how to construct a matched asymptotic solution, valid a t  
large R for general forcing, that takes advantage of these phenomena. It turns out 
that it is possible to construct a general solution to (18) that has a relative error of 
O(s2 1nR) and that yields matching formulae that depend only on the local behaviour 
of X at zero points. 

From (18), the second-order equation for is 

d -  db -(x"+z)-++pb = o. dt dt 

For away from zero points, (24) is most usefully rearranged to 

d2 - A  c2 d2b 
dt2 X dt2 
- (Xp)  = --- 

(24) 

(25)  

For near the nth zero point t = t, we expand 2 in a Taylor series in t-t,, 

x = Xn(t-t,)+i@p-t,)2+ ... . 
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Substitution of the 'fast' variable T = ( t - t , ) / s  into (24) then yields 

d 

The process of constructing solutions proceeds as follows. The outer solutions in 
t - t ,  < 0 are denoted by by*- and 6t*-. These must be connected to  the outer 
solutions in t - t ,  > 0, ;:,+ and f i r -+,  using inner solutions &i and b:.'. The 
outer solutions in t - t ,  > 0 must then be connected to the outer solutions in 
t-t,+] < 0 for the next zero point. The goal is to find C : + l ~ - ~ : + l ~ - + C ~ + l . - ~ ; + l ~ -  
given C:,-&-+ C:p-bt,-. 

The outer solutions are 
- 

2, 1P; 6;' * = 5 (t - t,) + O(s2 h R ) ,  * = - +-- (t  - t,) + O(e2 1nR). (27) X x 2 x  

The transition formulae giving C:+',- and C:+l,- from Cy,+ and Ct ,+  are 

These formulae have a relative error of O(c2 1nR). They can be derived by comparing 
the coefficients of to and tl in the numerators in equation (27). 

AS t-t,+O 

The inner solutions that match to the outer solutions as T-t- CCI are 

e F; 
2 x, ;:pi = 1---T+O(e21nR), 

b;.i = - ~ ~ ( 2 ;  tan-l (?, T) + IxL($n) 

+p,Ttan-' +O(clnR), (30b) 

As T++CCI 
2; 
X n  

i-+e-T+O(e21nR), 
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Equation (33) has a relative error of O ( 2  In R). The combination of (28) and (33) gives 

The above results have brought out several general features of the instability 
process. Equations (32) and (33) show that a t  zero points the growth of the 
instability is extremely rapid, with growth O(IX,lnR). In  contrast, (27) shows that 
away from zero points zb is nearly linear and thus that 6 is then essentially neutral. 
Equations (27) and (28) also verify that the acceleration does not directly affect the 
overall stability process. The acceleration's significance is merely that it forces a 
return to zero points. How it accomplishes this is not of particular importance. The 
transition formulae (28) and (33) are both dependent only on the local behaviour of 
X near zero points, so all X that produce that behaviour, whether, for example, step 
functions or sinusoidal, will produce essentially the same rate of instability. Wave 
behaviour at a zero point is only very weakly (a relative effect of O(s2 1nR)) affected 
by second- and higher-order derivatives of X .  That is why instability evolution can 
be usefully approximated by an impulse model. Higher-order derivatives of X are 
most important in the transition formulae for between zero points. In  them, 
however, they still have a relative effect of only O(E) .  

The matching formulae (28) and (33) can be simplified to give a bare-bones but 
clearer picture of the overall instability process. C:,- and CF*- are generally of 
comparable amplitude. However, CFg- is of greater importance because i t  is the 
factor that gets amplified. Once through the zero point by*+ dominates, C:.+, being 
O(R)  times greater than Gig+. In  the transition to  the region t < tn+l this inequality 
is eliminated. Once again, G, is most important in determining the instability 
evolution. The overall process can be reduced to 

the overall transition from C:.-b:y-+ C;*-bi.- to C?+l,- by",- + q + 1 ,  -&z+l. -. 

(34) 
2; 

X n + 1  
c:.+ x -7clPn(RC;y-, c;+1,- x ( t n + l - t t , ) - C n , + .  1 

Thus, (35) 

With two zero points per period, the Floquet factor B is, approximately 

B x 71.2(tz - t l )  (271. + t ,  - t z )  lFll lPZ(R2. (36) 

We note that for the two-delta-function case 

4 Y  t,-t, = 71.--- and = = 3. 
I a R  

Equation (36) for this case becomes -4fm,r?mi,7c2R2. It thus reproduces the 
dominant term in (19a, 6 ) .  

Table 1 gives results for r? = cost-0.5 from (28), (33) and from the simpler 
formula (36). The approximate 6 from both approximations is compared to the exact 
6. The results show that, as a practical matter, both approximations are adequately 
accurate down to R of about 6. The absolute error in the second-order approximation 
is, as expected, nearly independent of R. The absolute error from (36) is O(R) ,  giving 
a relative error of O(e) .  

4.4. Notes on when Pr $1 1 

In most respects, wave behaviour with Pr + 1 is qualitatively the same as for 
Pr = 1.  We briefly discuss two areas of difference. The first is the range of un- 
stable a, which was found to be very limited when Pr = 1 .  In  contrast, when Pr = 0, 
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R flexact 6,z 

2 142 193 260 
4 753 904 103 9 
6 1909 2134 233 8 
8 3604 388 4 4156 

10 583 1 6154 649 4 
20 24841 252 94 259 76 
30 568 95 574 22 584 55 
40 101 959 102538 103903 
50 160023 160641 162 349 
60 231 083 231 733 233 782 
80 412 178 41 2 879 415613 

100 645 237 645 978 649 395 

TABLE 1 .  Exact and approximate B(R) for 8 = cost-0.5. The second column gives the exact 6, 
the third the O(s21nR)-accurate 6 from equations (28), (33), and the fourth gives the O(e)-accurate 
6 from equation (36) 

a can be in the unstable range even as it becomes infinite. With Pr = 0 and with, as 
before, Y" = 2" = b = 0, (9) becomes 

(;+Z2)Pw = ( 6 - y ) f l p ,  

_ -  dp - -Rw. 
dt 

(37 a)  

(37 b)  

Instability can be proved if (6- y )  ax" is always negative. When that holds, if p and 
w are of opposite sign they remain of opposite sign. But then, from (37 b) ,  IpI must 
increase monotonically. (6-7) ax" always negative holds as a+ 00, for example for 
the model two-delta-function case examined in $4.2 and for sinusoidal forcing with 
y = 0. The same result also holds for the case Pr = co (with lengthscale then being 

The second difference is the possible occurrence of subharmonic solutions. 
Equation (11) can be used to prove that when Pr = 1 normal solutions for p are 
necessarily harmonic. Then the coefficient of f j  is necessarily negative and normal 
solutions for p" are monotonic. The Floquet factor thus has to be positive and the 
Floquet exponent real. However, when Pr =I= 1 the term (Pr-l- 1) d12/dt in (11) can 
make p" oscillatory. This occurs over a single intermediate range of 12, since for l2 too 
small - (d6/dt)2/14 dominates and for Z2 large -$(Pr-'- 1)2 l4 dominates. 

( K / W ) i ) .  

5. Kelvin-Helmholtz case, non-zero G 
We now consider the Kelvin-Helmholtz case as modified by a positive (statically 

stable) G .  To simplify matters, consideration is limited to Pr = 1, Y(t) = Z(t) = 
/? = 0. Analytic solutions will be discussed for impulse forcing. As with 0 = 0 these 
solutions give some useful qualitative results. Also, we shall show numerical solutions 
for X = cost. 

The most useful parameter with which to discuss results is not C itself but rather 
G I R T 2 .  This is the flow's local (in time) Richardson number. In terms of the original 
dimensional quantities, Ri is (p, w ~ A G ) / ( ~ & ~  a:) ; w2AG is the dimensional steady 
acceleration. It is well known (Howard 1961) that for steady, inviscid, parallel flows 
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Ri(z) everywhere greater than a is sufficient for stability. For the unsteady case 
considered here, this sufficiency will be shown to be a practical but no longer exact 
guide. R i  = a  becomes the approximate boundary between strong and weak 
instabilities rather than the instability cutoff. 

With P r  = 1 ,  and with Y(t )  = Z ( t )  = ,4 = 0, equations ( 9 a ,  6 )  are 

- + Z 2  PW = ((CLRX--Y)CLX~+C?G) = p, ( 3 8 a )  
(:t 1 

$+12p = -Rw. (38b)  

The analogue of (24)  is 

(39)  
- (x2+€2)z+(xP+o)~ d d6 = 0, 
dt 

where 6 = R-lG. 

functions of order 0. Over the nth interval between impulses 
With impulse forcing, solutions to (39)  are made up of associated Legendre 

C; = Cg Pun(%%) +Cr Q,,(iRX), (40a)  

where 

When Ri ,  is greater than +, v, is of the form -++ivi,,. 
We now consider the model case of the two delta functions that was discussed in 

$4.2.  For this case Ri and v are independent of n. The expressions for the Floquet 
factors arc 2 = A k ( A 2  - 1);. For no zero points 

A = i;”(PQ, 2%) P(PQ, x) - P ( P 2 , 2 x )  F(Q2,x)  --P(Q2,2x)P(P2, x), (41)  

and for two zero points 

A = F(P&, 27c)P(PQ, x ) - P ( P 2 , 2 x ) F ( & 2 ,  x)--P(&2,2x)P(P2,71) 

+xiF(PQ, 2 x ) F ( P 2 ,  x ) - x i F ( P 2 ,  2 n ) F ( P & x )  +&’F(P’, 2 n ) F ( Q 2 , n ) ,  (42)  

d 
where (43 ) 

The expressions are different for the two cases because connection formulae are 
needed for zero points. The argument of Q,, then passes through that function’s 
branch cut. The formulae are (Olver 1974) 

P(PQ, t , )  = (& (1 -T2)Pu(T) & , ( . ) ) I  , T = 33. 
‘n 

Cg,+ = Cg*-+xiC,“*-, Cr*+ = Ct.- ,  (44)  

where the plus and minus superscripts refer to intervals with plus and minus x. 
Equation (44)  indirectly indicates the destabilization effect of zero points. When v is 
real and greater than -$, Q, is recessive a t  co and P, is dominant. 

The A can be considerably simplified when 1~(x) l  and Ir(27c)l are both large. Then, 
except when v = -+, when log terms enter, 

2 ” x - Q  + v) 2-”-’n-V( - +- v) -u--l - 
P” x 7” + T - AT” + BT-”-~,  (45a) 

r ( i + v )  r( - v) 



Xtability of an  oscillated f lu id  with a uniform density gradient 465 

0 2 

h 

v 



466 D. Jacqmin 

Two useful relationships between A ,  B,  and D are that D = n c o t ~ v B  and that 
XcotXv A 3  = 1 / ( 2 ~ + 1 ) .  

We now consider (41) and (42) as R+m. With no zero points, from (406), (41), 
(45) , 

This gives weak subharmonic instabilities. With two zero points and for Ri < $ 

When v = 0 this reproduces the dominant term (with Y approximated as n) of the 
G = 0 case. Equation (47) breaks down as v --f -8, since r(++ v) then becomes infinite. 
A more complete expansion of (42) shows that as long as v is real, the two-zero-point 
case gives instability growth rates that are a monotonically decreasing function of 
Ri. Once Ri becomes greater than a, A becomes oscillatory. Ri = is roughly the 
bound between strong and weak instabilities. 

We briefly consider sinusoidal accelerations. Results are qualitFtively in agreement 
with the impulse case. Figure 6 shows results for 2 = gos t -0.5. A appears to steadily 
increase with R for 0 of up to about 0.21. Above that A becomes oscillatory in R. Both 
sybharmonic and harmonic instabilities are found. Also, there are regions of neutral 
( A  = 0) untuned modes. These are especially prevaJent for (figure 6c) Ri = 0.4. Above 
d = 0.3 instabilities are generally weak. Decay in 4 with increasing d,  however, is not 
monotonic. Figure 6 ( d )  shows, for example, that  A has a peak a t  about 0 = 0.6. One 
slight difficulty with forcings other than the two-delta-function model is that Ri is 
not constant. The values of Ri that are probably most relevant to the instability 
process are the Ri a t  zero points. For = cost-0.5, these are equal to @. 

6. Concluding comments 
The work here has primarily considered the case of zero G. For this case, one 

significant result has been the demonstration of the relative weakness a t  large R of 
the Kelvin-Helmholtz instability. The Rayleigh-Taylor instability then has a 
growth rate of O(RQ) while the Kelvin-Helmholtz growth rate is only O(1nR). This 
weakness should perhaps not have been entirely unexpected since the stability of 
uniform shear without density gradients is well known. Uniform shear precludes the 
existence of fast-growing inflectional instabilities. The shear’s chief effect when it is 
large is to distort, disorganize, and thereby weaken any perturbations. Stretching 
of the wave by the shear also enhances viscous diffusion. On the other hand, at small 
R, this disorganizing effect is weak, and Kelvin-Helmholtz instabilities can then play 
a dominant role. The Kelvin-Helmholtz case remains unstable as R+O while the 
Rayleigh-Taylor case has a finite R,. 

An important question is how applicable our Kelvin-Helmholtz results are to flows 
with boundaries. We have therefore begun to look at  the case of oscillated flow 
between two parallel planes. Such a flow could be excited by oscillating a long 
container that has a fluid with a uniform temperature gradient between its top and 
bottom. The resulting parallel oscillating flow in the bulk of the container is then 
given by (3).  We assume that the non-dimensional height H of the container is 9 1 
and therefore that effects of O(1)-width top and bottom Stokes layers can, to a 
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first approximation, be ignored. With /3 = Y" = Z" = G = 0 the flow perturbation 
equations are 

where 

--Pr-'V2 p = -Rw, 
(:t - ) 

p = 0 a t  0 and H .  For w, both no-slip and no-stress boundary conditions have been 
considered. 

Qualitative results can for the most part be understood in terms of the unbounded 
case. In  the unbounded case, it was found that instability growth rates are greatest 
a t  y = 0. Consistent with this, the preferred mode for the bounded case is very 
smooth in the vertical, of form sin (nz /H) .  a/az is thus O(n /H) .  The case aR 9 n / H  
is particularly simple to understand. The growth, though not the structure, of the 
perturbation eigenfunction can then be understood from (48) with the z-derivatives 
set equal to zero. In other words, the eigenfunction's behaviour is given 
approximately by the unbounded equations (9) with y = 0. At large R, eigenfunction 
growth, just as in the unbounded case, has been found to be concentrated a t  zero 
points. When la/azI Q laRl these zero points are (i) almost coincident with X(t) = 0 
and (ii) occur almost simultaneously throughout z. 

No systematic effort has yet been made to find critical R as a function of H .  Unlike 
the unbounded case, the damping effects of a necessarily finite a2/dz2 makes R, 
greater than zero. It is worth noting, however, that R, can still be very small. For 
example, with H = 100 (for water with w = 1 the corresponding dimensional height 
is, typically, less than 10 cm) instabilities have been found for R down to 0.07. 
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